Telegram Group & Telegram Channel
Напишите линейную регрессию на Python с нуля

Это один из самых простых алгоритмов. Он включает следующие шаги:
1️⃣ Инициализация параметров.
2️⃣ Вычисление предсказаний.
3️⃣ Вычисление функции потерь.
4️⃣ Обновление параметров с помощью градиентного спуска.
5️⃣ Повторение до сходимости.
import numpy as np

class LinearRegression:
def __init__(self, learning_rate=0.01, n_iters=1000):
self.learning_rate = learning_rate
self.n_iters = n_iters

def fit(self, X, y):
n_samples, n_features = X.shape
self.weights = np.zeros(n_features)
self.bias = 0

for _ in range(self.n_iters):
model_preds = self.predict(X)
dw = (1 / n_samples) * np.dot(X.T, (model_preds - y))
db = (1 / n_samples) * np.sum(model_preds - y)

self.weights -= self.learning_rate * dw
self.bias -= self.learning_rate * db

def predict(self, X):
return np.dot(X, self.weights) + self.bias


#машинное_обучение
#программирование
Please open Telegram to view this post
VIEW IN TELEGRAM



tg-me.com/ds_interview_lib/273
Create:
Last Update:

Напишите линейную регрессию на Python с нуля

Это один из самых простых алгоритмов. Он включает следующие шаги:
1️⃣ Инициализация параметров.
2️⃣ Вычисление предсказаний.
3️⃣ Вычисление функции потерь.
4️⃣ Обновление параметров с помощью градиентного спуска.
5️⃣ Повторение до сходимости.

import numpy as np

class LinearRegression:
def __init__(self, learning_rate=0.01, n_iters=1000):
self.learning_rate = learning_rate
self.n_iters = n_iters

def fit(self, X, y):
n_samples, n_features = X.shape
self.weights = np.zeros(n_features)
self.bias = 0

for _ in range(self.n_iters):
model_preds = self.predict(X)
dw = (1 / n_samples) * np.dot(X.T, (model_preds - y))
db = (1 / n_samples) * np.sum(model_preds - y)

self.weights -= self.learning_rate * dw
self.bias -= self.learning_rate * db

def predict(self, X):
return np.dot(X, self.weights) + self.bias


#машинное_обучение
#программирование

BY Библиотека собеса по Data Science | вопросы с собеседований


Warning: Undefined variable $i in /var/www/tg-me/post.php on line 283

Share with your friend now:
tg-me.com/ds_interview_lib/273

View MORE
Open in Telegram


Библиотека собеса по Data Science | вопросы с собеседований Telegram | DID YOU KNOW?

Date: |

The Singapore stock market has alternated between positive and negative finishes through the last five trading days since the end of the two-day winning streak in which it had added more than a dozen points or 0.4 percent. The Straits Times Index now sits just above the 3,060-point plateau and it's likely to see a narrow trading range on Monday.

Библиотека собеса по Data Science | вопросы с собеседований from sg


Telegram Библиотека собеса по Data Science | вопросы с собеседований
FROM USA